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Abstract
The possibility of pairing correlations arising from the quenching of the
repulsive electron–ion Darwin term in the pairon (Cooper pair) state is
examined. Two pairing processes, arising from ionic density fluctuations
(phonons) and from electronic density fluctuations (excitons), are shown to
dominate in low Tc and high Tc superconductors, respectively. Based on a
two-body E ·p interaction potential the BCS type of wavefunction and reduced
Hamiltonian are obtained. As quenching occurs only when a pairon is scattered
by the nucleus without recoil between an electron and a hole section of the
Fermi surface, a two-band model with umklapp processes gives the Tc equation
for both the phonon- and exciton-coupled superconductors whose solution is
similar to that obtained by Eliashberg equations except that the dependence of
Tc on structure is explicitly included.

1. Introduction

The BCS theory in the Eliashberg form with a retarded electron–phonon interaction and
Coulomb repulsion remains today a remarkably complete theory of the superconducting
state [1]. The main support for the model is obtained from the isotope effect and near equality
of the phonon spectral functions α2 F(ω) obtained from tunnelling experiments and g(ω),
the phonon density of states, from neutron scattering. Despite its immense success, the BCS
theory and its refinements like the Eliashberg theory have not led to the prediction of Tc [2].
The discovery of high Tc layered oxide superconductor with Tc more than 125 K and almost
vanishing isotope effect has led to some suggestions that in oxides magnetic excitations could
lead to the two-body attractive interaction with higher coupling strength compared to phonon
coupling [3, 4]. But this is not supported by the discovery of superconductivity in MgB2 with
no copper atoms and Tc higher than in metals and alloys [5].

The present strong-coupling theory of superconductivity assumes that the total interaction
comprising a phonon-induced attractive interaction and the Coulomb interaction produces an
effective two-body coupling, expressed by (λ − µ∗), which leads to superconductivity if λ
exceeds µ∗. In the E · p model, there is an additional phonon-induced coupling, λD, for
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s electrons only. This arises from the Darwin term interaction that exists between the electron
and the ion and the electron and other electrons, the former being strong and repulsive and the
latter weak and attractive. It is shown that this repulsive interaction is quenched when a pair
of electrons is scattered, to and fro, without recoil by the nucleus from an electron to a hole
section at the Fermi surface and thereby provides for the condensation energy. If the scattering
is with the recoil of the nucleus the E · p repulsive energy remains unchanged from that in
the normal state. This approach gives the experimentally adjusted Tc equation obtained by
McMillan using Eliashberg equations [6].

The motion of the Cooper pair in the lattice is described in terms of two variables which
are separable, one relating to internal coordinates and the other to the centroid’s coordinates.
The Schrödinger equation for the internal coordinates is found to be of a particle of reduced
mass, µ = m/2, charge e∗ = 2e and spin zero, where m and e are the mass and charge of the
electron, while that for the external coordinates is the Schrödinger equation for a free particle of
mass m∗ = 2m. The total energy including the E ·p energy breaks up into the sum of internal
energy and the energy of translation. This wavefunction accounts for the finite momentum
density of the superfluid along with its quantum phase and depends on both the internal and
external coordinates of the particle, called here a pairon.

The pairon–nucleus E · p scattering is described as a s-wave scattering of a particle of
mass m∗ by a deep and narrow potential well of scattering length e∗2/µc2. The potential
is a two-body delta-function potential similar to that used in neutron scattering and thereby
explains many of the puzzling results of tunnelling in superconductors. Further, this approach
addresses some of the aspects of superconductivity that are beyond the grasp of the present
Migdal–Eliashberg theory, like the dependence of superconductivity on crystal structure [2].

We have empirically shown that the repulsive electron–ion E · p interaction energy
vanishes in the time-reversed pair state if it continuously scatters from a hole to an electron
pocket at the Fermi surface and thereby accounts for Cooper condensation [7]. We present here
a detailed study of this model and show that the BCS reduced Hamiltonian and wavefunction
follow naturally from this model on appropriately defining the two-body interaction potential
produced by ionic density fluctuations (phonons) in low temperature superconductors and
electronic density fluctuations (excitons) in high Tc superconductors. Recently it has been
proposed that Darwin interaction plays a role in superconductivity but the treatment is
confined to semi-classical electrons and does not extend to the calculation of the critical
temperature [8, 9].

In section 2 estimates of Darwin term energy in atoms are discussed and in section 3
the electron–ion Hamiltonian including the E · p interaction is presented. The BCS-like
wavefunction and reduced Hamiltonian using the two-body E · p interaction potential is
obtained in section 4 and solutions for Tc are discussed in section 5. The superconductivity in
oxides based on the exciton mechanism is discussed in section 6.

2. Estimate of the Darwin term

The semi-metallic properties of BaPbO3 have been examined by Matheiss and Hamann [10],
who have concluded that 6s–2p overlap in this system is a consequence of the Darwin and
mass–velocity correction terms. Their conclusion is based on the estimates of these energies by
Baschelet and Schuter using relativistic conserving pseudopotentials [11]. They have shown
that the ns binding energy of group IV elements C, Si,Ge, Sn and Pb increased as a consequence
of the combined effect of these two terms to 16.3, 48.9, 337, 745 and 2500 meV respectively.
Using a non-relativistic hydrogen wavefunction the energies of the two terms can be decoupled.
We obtain the energy for the Darwin term (atomic) as 26.1, 42.3, 65.2, 91.7 and 3050 meV,
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respectively, for these elements. As the pairing correlation energy per electron is less than
3.5 meV for low Tc and less than 25 meV for high Tc superconductors, the Darwin term
interaction has the necessary strength to produce the Cooper pairing state.

In section 4 it is shown that electron–ion and electron–electron E · p interaction energies
vanish for the time-reversed pairs near the Fermi surface and the state of the quenched E · p

energy is described by the BCS reduced Hamiltonian and wavefunction. In the present model
pairons (Cooper pairs) are formed due to recoilless scattering by the nucleus from an electron
to a hole section at the Fermi surface that quenches the E · p energy. Solutions for Tc on this
model and those obtained from Eliashberg equations are discussed in section 5 for low Tc and
in section 6 for high Tc superconductors.

3. Electron–ion Hamiltonian including the Darwin term

The Hamiltonian for the system of electrons including the E · p interaction in the adiabatic
approximation can be written as

He =
∑

i

p2
i

2m
+

∑

i,ν

V (xi − Xν) + 1/2
∑

i �= j

e2
∣∣xi − x j

∣∣

+
π

2

(
e2h̄2

m2c2

) [
∑

i,ν

zδ(xi − Xν)−
∑

i> j

δ(xi − x j )

]
. (1)

We take one ion per unit cell and assume Xν as the position of the νth ion and xi as the position
of the i th conduction electron. Successive terms on the right in equation (1) are the kinetic
energy of the electron, the ei interaction, the ee interaction and the ei and the ee Darwin term.
Here we have assumed that ei and ee Darwin terms can be written as delta-function potentials,
with z as the valence ion charge.

The Hamiltonian including the E · p term using electron and phonon operators and
Nambu’s technique can be written as [12]

ψk =
∣∣∣∣

ck↑
c+
−k↓

∣∣∣∣ ψ+
k = ∣∣c+

k↑, c−k↓
∣∣

τ1 =
∣∣∣∣
0 1
1 0

∣∣∣∣ , τ2 =
∣∣∣∣
0 −i
i 0

∣∣∣∣ , τ3 =
∣∣∣∣
1 0
0 −1

∣∣∣∣ , τ4 =
∣∣∣∣

1 0
0 1

∣∣∣∣

H =
∑

k

Ekψ
+
k τ3ψk +

∑

q,λ

	qλ(b
+
qλbqλ + 1/2) +

∑

q,k

(V (q) + β)S(q)ψ+
k+qτ3ψk

+ 1
2

∑

k,q

(
4πe2

q2
+ β ′

)
(ψ+

k−qτ3ψk)(ψ
+
k′+qτ3ψk′ )

+

(
∑

k,q,λ

gF
kqλψ

+
k+qτ3ψk +

∑
gD

kK qλS(q)ψ+
k+K +qτ3ψk

)
φq,λ. (2)

Hereψk is a two-component electron field operator for a time reversed pair (k↑,−k↓) andψ+
k

is its adjoint, ck↑ (c+
k↑) destroys (creates) an electron of momentum k and spin up, bqλ (b+

qλ)

destroys (creates) a phonon of wavevector q and polarization λ, φqλ is the phonon field
operator and τi are Pauli spin matrices. The first two terms in equation (2) describe the bare
electron and bare phonon energies, respectively. The third term is the electron–rigid lattice
interaction with V (q) and β representing the Fourier transform of the electron–ion and Darwin
term pseudo-potentials, respectively, and S(q) is the structure factor. The fourth term is the
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Coulomb and Darwin term interactions between the electrons. The final term is the electron–
phonon interaction arising from the Fröhlich Hamiltonian and Darwin term pseudo-potential,
respectively,

gF
kqλ =

(
h̄

2M	qλ

)1/2 ∑

ν

〈k + q|∇νV |k〉εqλν (3)

gD
kK qλ =

(
h̄

2M	qλ

)1/2 ∑

ν

〈k + K + q |βν | k〉εq Kλν(K + q) (4)

where εqλν(εqkλν) = δX qλ
ν /|δXqλ

ν |(δXq Kλ
ν /|δXq Kλ

ν |) and δXqλ
ν (δX q Kλ

ν ) is the ion displacement
at lattice site ν that produces the phonon frequency,	qλ, wavevector q(q + K ) and polarization
λ.

Further

S(q) =
∑

ν

exp(iq·Xν) (5)

β = π

2

e2h̄2

m2c2
z〈δ(x)〉, β ′ = −π

2

e2h̄2

m2c2
〈δ(x12)〉 (6)

qλ = (bqλ + b+
−qλ). (7)

The Hamiltonian in equation (2) is now used to construct the electronic self-energy �
which is defined by the Dyson’s equation.

G−1(k, iωn) = G−1
0 (k, iωn)−

∑
(k, iωn).

The self-energy will have contributions from electron–static lattice, electron–phonon and
electron–electron interactions that appear in third, fourth and fifth terms in equation (2). Since
each of the contributions has two components of which one is from the Darwin term,

∑
=

F∑

ep

+
D∑

ep

+
O∑

el

+
D∑

el

+
O∑

ee

+
D∑

ee

(8)

where the superscript F denotes the electron–phonon self-energy for the Fröhlich-type
pseudopotential, D the Darwin term and O the electrostatic energy of interacting ions and
electrons in a uniform compensating charge distribution denoted by the first component in the
third and fourth terms in equation (2).

The self-energy in the superconducting state is written in terms of four parameters Z , χ ,
φ and φ̄ [1]∑

(k, iωn) = iωn[1 − Z(k, iωn)]τ4 + χ(k, iωn)τ3 + φ(k, iωn)τ1 + φ̄(k, iωn)τ2. (9)

Here the function φ(k, iωn) is the order parameter and Z (k, iωn) and χ (k, iωn) represent
the renormalization of the electron spectrum and change little when the material goes from
superconducting to normal phase. It is found that χ vanishes when the Green’s function in the
intermediate state is averaged over the states at the Fermi surface [2]. Further for homogeneous
superconductors in the absence of a magnetic field it is possible to choose a gauge in which
φ̄ = 0. We are then left with only two unknown functions, Z and φ, which are solved self-
consistently using Eliashberg equations to obtain the critical temperature Tc. This solution for
Tc is shown in section 5 to arise from the recoilless collision of the pairon with the nucleus for
the zero energy transfer using Lipkin’s sum rule [13].

The pair function φ determines the gap function�(ω) in the energy spectrum for T < Tc

and can be written as

φ(ω) =
∑

i

Z(ω)�i(ω) (i = ep, el, ee). (10)
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It is shown in section 5 that the phonon induced pair field in which E · p energy vanishes
arises due to transitions of the pairon between the electron and hole sections of the Fermi
surface through emission or absorption of phonons by the nucleus without any energy transfer
to or from the lattice vibrations, as in the Mossbauer effect. The el contribution originates from
the third term in equation (2) and describes the effect of electronic density fluctuations that
screen the ionic pseudopotential. These interactions appear in the cohesive energy of solids
and are described as the effect of bandgap on the band structure [14]. This may be called the
exciton mechanism of superconductivity [15].

3.1. The renormalization Z

At low frequency Z can be obtained from the self-energies and leads to the mass enhancement

Z(0) = 1 + λ = m∗/m, λ = −(∂�/∂ω)ω→0. (11)

The self-energy� is derived from the single-particle excitation energies including many-
body effects [16]. To obtain the enhancement due to electron–phonon interaction it is assumed
that Coulomb and band dressed effective mass, mc, is known. We show in appendix A.1 that
if both Fröhlich and E · p ep interactions are present

Z ′(0) = m∗∗/mc = (1 + λ)(1 + λD) (11a)

where λ and λD are the Fröhlich and E · p ep couplings, respectively.
In oxide superconductors where the exciton mechanism operates and the el interaction

dominates, the effective mass increases sharply as the electron in motion carries with it a
polaron cloud. This is discussed in appendix A.3 and used in section 6.

3.2. The pair field

To obtain the pair field φ(ω) in equation (10) we need to obtain the ep, ee and el contributions to
self-energy. The expressions for

∑F
ep and

∑O
ee are derived in many places like equations (3.21)

and (5.14) in [2].
∑D

ep is obtained by replacing gF
kqλ by gD

kK qλ in
∑F

ep. This is shown in
section 5. The effect of ee interaction is here tackled through an appropriate screening of the
nuclear charge and is included in the ep interaction. The remaining el self-energy arising from
electron–ion interaction can be expressed to second order as [15].

O∑

el

=
∑

K

|V̄kF (K )|2G(k + K , ω)

where

V̄kF (q) = Vei(q)

ε(q, 0)
�0(kF, q).

Here Vei (q) is the Fourier transform of the bare electron–ion potential, �0 (kF, q) is the
vertex function of the ee interaction and ε(q, 0) is the dielectric function of the electron gas [1].
The Green’s function is given by

G−1(k + K , ω) = ω − Ek −
∑

K

|V̄kF (K )|2
Ek − Ek+K

.

This leads to band structure energy per ion as [14]

Ubs = N−1
∑

k<kF

∑

K

′ |〈k + K |V̄ |k〉|2
Ek − Ek+K
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where N is the number of atoms and the prime indicates that K = 0 is excluded from the
summation. Including the Darwin term

Ubs =
∑

K

′|S(K )|2[V̄ 2(K ) + β2]χ(K )ε(K ) (12)

where ε(K ) is the dielectric function and χ(q) is given by

χ(q) = N−1
∑

k<kF

[
1
2 k2 − 1

2 (k + q)2
]−1 = Nbs(0)u(q/2kF) (13)

u(x) = 1

2
+

1 − x2

4x
ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣ . (13a)

Here Nbs(0) is the band structure electron density of states at the Fermi surface [6]. In the
paired state the repulsive energy β2χ(K ) vanishes, giving the el contribution to the pair field
φ in equation (10),

φel = F∗2
bs 〈β2〉〈χ(K )〉〈ε(K )〉 (14)

F∗
bs =

∑

K<2kF+ks

n(K )|S(K )|2. (14a)

Here F∗
bs is the sum of all reciprocal lattice vectors that contribute to it and satisfy the condition

|K | < 2kF + ks. Here kF and ks are the Fermi and Thomas–Fermi screening wavevectors
respectively. n(K ) is the number of equivalent K vectors. This coupling arising due to
electronic fluctuations (excitons) is discussed further in section 6.

4. Quenching of electron–ion E · p energy

We show that the interband scattering of a pair of electrons at the Fermi surface between two
bands, one electron-like and the other hole-like, leads to a state for which the expectation value
of the Darwin term vanishes.

Using the Born–Oppenheimerapproximation we consider the nuclei ‘clamped’ in position
as if these have infinite mass. Then we can write equation (2) as

H = He + Hn

with Hn as a small perturbation. On the basis of charge neutrality each unit cell will on an
average contain a nucleus and two electrons. Following Hopfield [17] we take the screened
electron–ion potential as a local symmetric potential concentrated in the unit cell. We treat the
E · p term as a perturbation.

H = HO + H ′ (15)

HO = p2
1

2m
+

p2
2

2m
− z(x1)e2

|x1| − z(x2)e2

|x2| +
e2 (x12)

|x12| (16)

H ′ = A {δ(x1) + δ(x2)} − A′δ(x12) (17)

where

A = π

2

(
e2h̄2

m2c2

)
z, A′ = −π

2

(
e2h̄2

m2c2

)
. (18)

We introduce the centre-of-mass and difference variables, x = x1–x2, X = 1
2 (x1 + x2),

and have

HO = P2

2m∗ +
p2

2µ
− (z − 0.25)e∗2

|x | (19)



The critical temperature of a superconductor on a possible E · p mediated pairing mechanism 149

where m∗ = 2m, µ = m/2, e∗ = 2e

p = p1 − p2, P = 1
2 (p1 + p2). (20)

Since the variables are separable the Schrödinger equation gives a wavefunction� which
is a product of a function �1(x) of the internal coordinates, x and another function �2(X) of
the centroid’s coordinate; X . �1(x) describes the motion of a particle of mass µ, charge −e∗
and spin zero moving in a central field V (x) of a charge +(z − 0.25)e∗ and �2(X) describes
the motion of a free particle of mass m∗. We show later that �1(x) refers to the momentum
density and �2(X) to the quantum phase of a superfluid.

The Bloch function �k(x) in the unit cell in question can be represented as an expansion
in spherical harmonics [17].

ψk(x) = eiK ·X ∑

l,m

Ylm(θ, φ)glmk(x). (21)

To estimate the E · p energy we use the pseudopotential theory and pick out the l = 0
component in equation (21). We expect the pseudo-wavefunction within the core to have no
oscillation [14]. The pseudo-wavefunction has the form of a 1s hydrogen wavefunction with
nuclear charge 〈z − 0.25〉. This is the approach taken by us in [7] to obtain empirically a Tc

equation that gives the critical temperature of several metals and alloys.
In cell i , the wavefunction has the form

�K (xi , Xi ) = eiK ·Xi g000(xi) g000 = (c3/π) exp(−cxi) (22)

c = z′

a∗
H n∗ , a∗

H = h̄2

µe∗2
= aH

2
n∗ = 2n, n = 1, 2, . . . . (23)

The contribution to energy by this component is

E0 = − z′2e∗4µ

2n∗2h̄2 +
h̄2 K 2

2m∗ . (24)

Here aH is the Bohr radius. With this wavefunction and xi = x2i−1–x2i it can be shown [18]
that

〈δ(x2i−1 − Xi )〉 = 〈δ(x2i − Xi )〉 = 8〈δ(x2i−1 − x2i)〉. (25)

Then from equations (17) and (18)

H ′ = 16z ′ A′δ(xi ). (26)

We then have

H = H0 + H ′ =
N/2∑

i=1

[
P2

i

2m∗ +
p2

i

2µ
− z ′e∗2

|xi | + 16z′ A′δ (xi)

]
. (27)

H leads to a BCS type reduced Hamiltonian when the interaction potential is H ′.
Consider the effect of the presence of two sections, one electron-like in band n and the

other hole-like in band n′, at the Fermi surface. These bands are centred about two different
symmetry axes in the crystal such that

E1(k) = −E2(k
′) = −E2 (k + K + q) (28)

the positive sign describing the conduction band (electron section) and the negative sign the
valence band (hole section). Here q is a phonon wavevector and K is a reciprocal lattice vector
as shown in figure 1. A pair in an electron section centred at � is scattered to and fro to a hole
section (band 2) centred at H of a square cross-section of the Brillouin zone;

(k↑,−k↓) ⇔ (
k ′↑,−k ′↓) = (k + K + q↑,−k − K − q↓) . (29)



150 C M Srivastava

k

– k'

k'

– k

H HΓ

Figure 1. The square section of the Brillouin zone with an electron pocket centred at � and a
hole pocket centred at H. A pair (k↑,−k↓) from the electron section is scattered, to and fro, to
the (k ′↑,−k ′↓) state in the hole section. The electron section is shown dotted. The transition
|k↑,−k↓〉 ⇔ ∣∣k ′↑,−k ′↓〉 leads to a state in which the repulsive E · p energy vanishes, leading
to an attractive interaction between the members of the pair. Here k ′ − k = K + q, where K is the
reciprocal lattice vector and q is a phonon wavevector.

The E ·p interaction perturbation can then have first order effect and the degeneracy is removed.
The secular equation with |1〉 describing the electron and |2〉 the hole state,

|1〉 = |k↑,−k↓〉, |2〉 = |k ′↑,−k ′↓〉 and |ψ〉 = α|1〉 +
√
(1 − α2)|2〉 (30)

is (
2α2(E0 +�)− E 2α

√
1 − α2�

2α
√

1 − α2� 2(1 − α2)(E0 +�)− E

)
= 0 (31)

where 2(E0 +�) = 〈1|H |1〉 = 〈2|H |2〉 and 2� = 〈1|H |2〉
There are two states with energies

E1,2 = [(E0 +�)± {(E0 +�)2 − 4α2(1 − α2)(E2
0 + 2�E0)}1/2] (32)

for α = 1/
√

2, E1 = E0 + 2� and E2 = E0.
So in state 2 the sum of ei and ee E · p energy vanishes in the condensed phase in which

the pair of electrons continuously scatter from the e- to h-pocket. The hybridization of two
degenerate wavefunctions |1〉 and |2〉 in the electron and hole sections of the Fermi section
with energy (E0 + �) removes the degeneracy and produces a bonding state with energy E0

and an antibonding state with energy (E0 + 2�), respectively. As (E0 + �) is the chemical
potential quenching produces an energy gap, Eg = 2�, around the Fermi surface.

The formation of a state of a lower energy in the superconducting compared to the normal
phase through the scattering of the pairon from the electron to the hole pocket at the Fermi
surface explains the property of ‘off-diagonal long-range order’ of the BCS wavefunction
discovered by Yang and described in [19]. We write a solution of the one-pairon wave equation
from equation (19) as

Hφk(x) = εkφk(x)

where φk(x) is expressed as a Wannier function

φ(x − Xi ) = (N/2)−1/2u0(x)
∑

k

eik·(x−Xi ). (33)
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Following Ambegaokar [19] the field operator

ψ+(x) =
∑

k

c+
k↑c+

−k↓φ
∗
k↑(x1)φ

∗
−k↓(x2)

is used to express the N-particle BCS wavefunction (un-normalized) as

ψ0N =
[∫

d3x1 d3x2φ(x1 − x2)ψ
+
↑(x1)ψ

+
↓(x2)

]N/2

|0〉 =
[
∑

k

φ(k)c+
k↑c+

−k↓

]N/2

|0〉

where

φ(k) =
(

N

2

)−1/2 ∫
d3x1 d3x2 u∗

0(x1)u
∗
0(x2)δ(x1 − x2)u0(x1)u0(x2)

∑

n

eik·xn .

Using a variational BCS wavefunction

ψ=
∏

k,k′
k �=k′

(
u2

k + v2
k b+

k

) (
u2

k′ + v2
k′ b+

k′
) |0〉 (34)

the BCS reduced Hamiltonian for a two-band model is

Hred =
∑

k

εkb+
k bk +

∑

k′
εk′ b+

k′ bk′ −
∑

k′ �=k

Vkk′ b+
k′ bk (35)

where k ′ − k = K + q with k and k ′ belonging to electron and hole sections, respectively, and

Vkk′ = 〈
k ′n′∣∣ H ′ |kn〉 (36)

n′ and n being the band indices of the hole and electron section. For a single pairon with

uk = vk = uk′ = vk′ = 1/
√

2 (37)

the expectation value of energy in the ground state with Vkk′ = 2� is

E = 2(E0 +�)− 4Vkk′ ukvkuk′vk′ = 2E0.

As in equation (32) the quenching is complete for α = 1/
√

2, that is when the pairon
spends equal time in the electron and hole sections. From BCS theory equation (37) holds
only for a pairon at the Fermi surface and is a consequence of the variational nature of the BCS
wavefunction. If α �= 1/

√
2, from equation (32) the quenching is incomplete. We define the

super electron charge density per atom as

ns = 2α(1 − α2)1/2 (38)

α depends on several factors like crystal structure, Kmin/2kF ratio etc and even at the Fermi
surface may be different from 1/

√
2, contrary to the BCS model. This is discussed in section 6,

where ns is different from unity for many oxide superconductors.
The wavefunction for Hred (equation (35)) as a projection of |ψ0〉 on the N-particle space

can be expressed in coordinate representation as

ψ0N (x1s1, x2s2, . . . , xN sN ) = exp
[
iK · {

X1 + X2 + · · · + X N/2
}]

× Aφ (x1 − x2) χ (1↑, 2↓) φ (x3 − x4) χ (3↑, 4↓)
· · ·φ (xN−1 − xN ) χ (N − 1↑, N↓) (39)

where K andφ are the same for all pairs and the operator A antisymmetrizes the entire function.
This is the wavefunction with finite momentum density of the superfluid. It can be expressed as√
ρ exp(iη)withρ representing the density and η the quantum phase of the superfluid providing

justification for the basic assumptions of the Ginzburg–Landau equations [20]. As we are
concerned with critical temperature we shall not pursue many aspects of superconductivity
associated with non-vanishing K and take K = 0.
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5. Self-energy of the super state and the Tc equation

The self-energy in equation (9) for a dirty superconductor has only the componentτ4, that gives
the normal self-energy, ξ(ω) = [1 − Z(ω)]ω, and the component τ1, that gives the pairing
self-energy, φ(ω). In the present model φ(ω) is obtained from H ′ in equation (27) and the
renormalization factor Z(ω) for low frequencies is discussed in section 3.1 and appendix. The
Tc equation is obtained solving these equations simultaneously at the critical temperature [6].

Consider a pairon centred at X j in electron band γ in state |1〉 = |k1↑,−k1↓〉 scattered to
state |2〉 = |k2↑,−k2↓〉 in hole band δ. The wavefunction can be expressed as in equation (33),

φ
(
x − X j

) = (N/2)−1/2 u0(x)

{
α

∑

k1εγ

eik1·(x−X j) +
√

1 − α2
∑

k2εδ

eik2·(x−X j)

}
. (40)

The transition from γ to δ and back to γ takes place through emission and absorption of a
phonon of momentum of h̄(k1 − k2) and energy h̄2(k2

1 − k2
2)/2m∗ between the pairon and the

nucleus at X j through H ′ interaction. The transition probability for a one-phonon process has
been discussed by Glauber [21] for neutron scattering and can be used for the pairon scattering
as both have delta function scattering potentials and energy and momentum transfers for both
are in the range of the lattice frequencies and wavevectors. We obtain

W (k,	) = 8π3h̄3

Mm∗2

∣∣b j eik·X 0 j e−q·X 0 j
∣∣2

×
∑

ni ,n f ,λ

w
(
n f , ni

) ∣∣〈n f

∣∣ k · εqλQqλ|ni 〉
∣∣2

e−2Bδ
[
h̄2k2/2m∗, h̄	

]
(41)

where we have used H ′ in the scattering length, b (=z′e∗2/µc2) approximation,

H ′ = π

2

(
z ′e2h̄2

m2c2

)
16δ(x) = 2π h̄2

m∗ bδ(x). (42)

In equation (41) M is the mass of the nucleus, m∗ is the mass of the c.m. of the pairon,
w(n f , ni ) is the probability of finding the lattice in the initial state Ei and final state E f , and

k = k1 − k2 = K + q (43a)

h̄2k2

2m∗ = h̄	qλ. (43b)

Here K is a reciprocal lattice vector and q a phonon wavevector, εqλ is the unit polarization
vector and Qqλ is the Fourier component of the displacement vector in the normal modes,

Qqλ =
(

h̄

2	qλ

)1/2

φqλ

where φqλ is defined in equation (7). e−2B is the Debye–Waller factor. As discussed earlier the
scattering produces bonding and antibonding states (equation (32)) with energies ±� about
the Fermi level. This can be expressed it in terms of scattering length, b+ = +b and b− = −b.

We now show that equation (42) gives the pairing self-energy which is similar to that
obtained as the solution of Eliashberg equations [6]. The coherent inelastic scattering of pairons
by the nucleus bound in the solid through the recoilless process produces the pairing self-energy
and the bonding and antibonding states. On the other hand, the incoherent scattering produces
the non-bonding state and the normal state self-energy. The inelastic incoherent cross section
for neutron scattering for the one-phonon process based on equation (41) has been obtained
by Placzek and van Hove [22]. We use it to obtain the transition probability for the incoherent
pairon scattering by the nucleus including the following features that apply to the present case:
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(i) the virtual scattering process |1〉 ⇔ |2〉 takes place above the Fermi sea amongst available
states within ±hωD of the Fermi surface,

(ii) in the super state for a uniform isotropic superconductor the electron density of states is
N(0)Re {ω/√ω2 −�2(ω)}, where N(0) is the density of states at the Fermi surface and
�(ω) is the gap field.

These are required to get w (n f , ni ) in equation (41).
We obtain following reference [22] the transition probability for one-phonon inelastic

incoherent scattering,

W (ω) = 8π3h̄3

m∗2

{〈
b2〉 − 〈b〉2} ∑

K<2kF+qD

∫ ∫
dω′ d	 S(ω′,	,ω) (44)

where

S(ω′,	,ω) = (K + q)2

2M	qλ

N(0)

(4π)2
Re

(
�(ω′)√

ω′2 −�2(ω)

)

× [exp(−2B)
{

Dq(ω
′ + ω) + Dq(ω

′ − ω)
}

F(	). (45)

Here the phonon propagator Dq(ω) = (ω −	− io)−1 is the same as obtained in the
expression for self-energy of the super state using the Eliashberg equation in [12] and F(	)
is the phonon density of states. From equation (6)

〈1| H ′ |2〉 = 2β = 16β ′. (46)

The ensemble averages, 〈b2〉 and 〈b〉2, can be expressed in terms of the average over β.
The	 dependent part of S in equation (45) can be expressed in terms of the electron–phonon
coupling constant gD in equation (4)

α2 F(k,	) = 2
∑

j

N(0)
∣∣gD

k j

∣∣2
δ(	− ω′

k j ) (47)

where

gD2

k j =
(

h̄

2Mω′
k j

)
〈|K + q|2〉 {〈β2

〉 − 〈β〉2
}
. (48)

The summation over K and q can be expressed in terms of F∗
bs defined in equation (14a).

On account of inversion symmetry K and q always appear in pairs ±K , ±q . For a single
scattering event, the two are independent and q depends on the shape of the electron and hole
pockets (figure 1). The recoil corresponds to two displaced probability density functions, one
for emission and the other for absorption. The total number of possibilities is then given by
(2F∗

bs)
2. We can write

λ = 2
∫
α2(	)F(	) d	

	
=

N(0)
〈
gD2

〉

M
〈
	2

〉 (49)

where
〈
gD2

〉
= F∗2

bs

〈|K + q|2〉 {〈β2
〉 − 〈β〉2

}

2
(50)

with

F∗
bs =

∑

K<2kF+qD

n(K ) |S(K )|2. (51)
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The average over 〈	−2〉 in equation (49) is over frequencies of the harmonic oscillator
associated with the nucleus and the pairon and can be expressed as

〈	−2〉 = 〈	−1〉lattice · 〈	−1〉pairon. (52)

It is easily shown that for a Debye solid at T = 0 K [23]

〈	−1〉lattice = ( 2
3ωD)

−1. (53a)

The lattice waves that are involved in the pairon scattering |1〉 ↔ |2〉 are from s to s state at
the Fermi surface so the density of phonon states is reduced by a factor Ns(0)/N(0), where
Ns(0) is the s-electron density of states. We obtain

〈
	−1〉

pairon = N(0)

Ns(0)

∫ (2/3)ωD

0

F(	) d	

	
= N(0)

Ns(0)

(
3

2
ωD

)−1

. (53b)

From equations (49), (52) and (53),

λ = N2(0)F∗2
bs

〈|K + q|2〉 {〈β2
〉 − 〈β〉2}

2Ns(0)Mω2
D

(54)

with Ns(0)β ∼ ns defined in equation (38).
For coherent scattering we obtain a similar expression except that 〈β〉2 is small compared

to 〈β2〉 by a factor Ns(0)/N(0) as the former involves s to s scattering while the latter from
s to any other state, s, p, d, . . ., at the Fermi surface. For the inelastic coherent scattering we
then obtain

λD = N(0)F∗′2
bs

〈|K |2〉 〈β2
〉

2Mω2
D

(55)

where

F∗′
bs =

∑

K<2kF

n(K ) |S(K )|2 (55a)

Equations (55) and (55a) are in fact obtained in the ‘incoherent approximation’, in which
one averages the scattering over a large number of Brillouin zones and over a large number
of angles when the specific effects of coherence are eliminated [24]. In this case the effect of
phonon wavevector q in the summation in equation (55a) vanishes and is the same as in elastic
Bragg scattering.

We now consider the case when the pairon enters the core of the ion in equation (19). The
electron–ion interaction weakens and may even vanish due to the cancellation theorem [14].
However, the ee field due to higher energy cut-off would still exist. The pseudopotential for
the pairon can then be expressed as

V (x) = +
(z − 0.25) e∗

x
x � 2R

= −0.25e∗

x
x < 2R (56)

where R is the radius of the core. In the core region V (x) is repulsive but the E · p interaction
is attractive. Hence Cooper pairing that makes it vanish is opposed in this region. In this case
the ee coupling is given by equation (54) if we replace z in β in equation (6) by −0.25. This is
equivalent to the pseudopotentialµ∗ of Morel and Anderson [25]. Since Ns(0)β ∼ ns, which
does not change, we have

µ∗ =
(

− 0.25

z − 0.25

)
N2(0)F∗′′2

bs

〈|K + q|2〉 {〈β2
〉 − 〈β〉2

}

2Ns(0)Mω2
D

(57)
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where

F∗′′
bs =

∑

K<2kF+ks

n(K )
∣∣S(K )2

∣∣. (58)

In equation (58) ks is the Fermi–Thomas screening wavevector.
To obtainφ (ω), the pairing self-energy,we perform the integration overω′ in equation (44)

expressing that over 	 as λ, λD and µ∗ in equations (54), (55) and (57), and at Tc equate it to
ξ(ω),

I = φ(ω)T =Tc = �0

[∫ ωc

0

dω′

ω′ tanh

(
ω′

2Tc

)
× [
λ− λD − µ∗]

]

= �0 [ln (ωc/Tc)]
[
λ− λD − µ∗]

= 2π h̄W inc(ω)

= ξ(ω)T =Tc = Z(0)�0. (59)

Using equation (11a) and ωc = (2/3)ωD we obtain

Tc = θD

1.5
exp

[
− (1 + λ)(1 + λD)

λ− µ∗ − λD

]
. (60)

This is McMillan’s experimentally adjusted Tc equation with minor differences. The
orders of magnitude of λ, λD and µ∗ are 1, 0.04 and 0.1 respectively [6]. We show later that
these values are obtained from equations (54), (55) and (57) when appropriate values of the
materials parameters, N(0), F∗

bs, β and θD are substituted in these equations.
The exponential factor in equation (60) can be interpreted as the fraction of collisions with

recoil in pairon scattering by the nucleus using Lipkin’s sum rule [13]. In equation (41) the
probability function w (n f , ni ) satisfies the condition

∑

n f

w(n f , ni ) = 1

where

w(n f , ni ) = ∣∣〈n f

∣∣ exp(ik · X j ) |ni 〉
∣∣2
.

Lipkin’s sum rule gives

〈h̄	〉
∑

n f �=ni

w(n f , ni ) = (h̄k)2/2M = R (61)

where R is the free recoil energy of the nucleus and as shown in equation (53a)

〈	〉 = (2/3)ωD.

We obtain
∑

n f �=ni

w(n f , ni ) = R

(2/3)ωD
= 1 −

∑

ni

w(ni , ni ). (62)

But the sum ofw(ni , ni ) is the recoilless fraction that gives exp(−2B), the Debye–Waller
factor with

2B = 〈K 2〉〈u2〉. (63)

The result in equation (62) is obtained for T = 0. As T increases R increases due
to increase in the number of phonons,which increases the fraction of scattering events with
recoil and hence decreases the fraction of recoilless collisions. For a one-phonon process
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Table 1. The parameters used to obtain the critical temperature, Tc, from equation (65) for
comparison with experiment. The values used for Ks and χp to obtain β using equation (67) are
from [27]. z is the valence used in equation (67) to obtain β. The values of N(0), λ, θ and Tc
are from [6]. F∗

bs is calculated from Fermi surface studies for Pb (see text) but for all others from
K < 2kF and best fit to Tc. Note that to estimate β for Pb z is taken here as two and not four to fit
the results in agreement with [7].

Ks χp (×106 β N(0) λ θD 〈|K + q|2〉 λD Tc (K) Tc (K)
Element z (%) emu mol−1) (meV) (states eV−1) [6] (K) F∗

bs (Å−1) (cal) (obs) (cal)

V 5 0.57 133 4.84 1.31 0.60 399 30 4.55 0.020 5.3 5.22
Nb 5 0.89 109 9.20 0.91 0.82 277 30 4.18 0.047 9.22 8.69
Ta 5 1.1 8.3 14.93 1.04 0.65 258 18 4.24 0.087 4.48 5.39
Mo 2 0.59 25.6 10.25 0.28 0.41 460 18 4.28 0.0023 0.92 0.71
W 2 1.04 16.0 30.85 0.148 0.29 396 18 4.36 0.0084 0.012 2.22
Al 3 0.161 18.7 5.87 0.208 0.38 428 26 3.64 0.0036 1.16 1.04
Pb 2 1.46 43 15.11 0.30 1.12 105 26 3.63 0.075 7.19 5.22
In 3 0.81 23 24.02 0.212 0.71 112 14 2.61 0.032 3.40 2.36

the recoilless fraction vanishes rapidly as T approaches Tc = R/kB, as in the Mossbauer
effect [26]. Comparing equations (55) and (63), 2B is λD, and equating R to kBTc we obtain

Tc = θD

1.5
λD = θD N(0)

〈
β2

〉
F∗2

bs

〈|K |2〉
3Mω2

D

. (64)

Expressing Tc and θD in K, N(0) in states eV−1, β in meV, M in amu, K + q in Å−1,

Tc(K) = 0.186
N(0)

〈
β2

〉
F∗2

bs

〈|K + q|2〉
MθD

= 0.667 λD θD. (65)

In table 1 we give Tc obtained from equation (65) with estimates of β from the Knight
shift,

Ks = 8π

3
χp〈|uk(0)|2〉FS (66)

β = π

2

(
e2h̄2

m2c2

)
z′〈|uk(0)|2〉FS = 0.75 µ2

B(z − 0.25)
Ks

χp
. (67)

Here χp is the nuclear magnetic susceptibility and 〈|uk(0)|2〉FS is the average s-electron density
at the nucleus for the states at the Fermi surface. The values of Ks and χp are taken from [27].

For fcc Pb, kF = 1.57 Å−1, qD = 1.25 Å−1 and a = 4.94 Å. The weight of the reciprocal
lattice vectors satisfying the condition |K |< 2kF is 26. The way these reciprocal lattice vectors
produce non-vanishing contribution to the pair field is illustrated in figure 2 by the [110] section
of the FS of Pb as given by Anderson and Gold [28]. �[110] is a hole orbit centred at � in the
second zone and ζ[110] are six electron orbits in the third zone centred at K ,U, . . . , points in
the Brillouin zone. A pair |1〉 gets scattered to |2〉 from the hole to the electron section such
that k′ − k = K(220) + q, where q is a phonon vector. We call K (220) active. On this basis
only 26 reciprocal lattice vectors in Pb are active. The values of F∗

bs in table 1 are those that
satisfy the condition |K | < 2kF and give values close to Tc as detailed studies of the Fermi
surface were not made.

The agreement of Tc obtained from equation (65) with parameters given in table 1 for
all the elements is satisfactory except for W , where the estimate of β appears incorrect. The
Knight shift in this case may not all be due to the contact term alone.
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Figure 2. The [110] section of the Fermi surface of Pb as given by Anderson and Gold [28]. The
ψ[110] is a hole orbit centred at � in the second zone and ς[110] are six electron orbits in the third
zone centred at K,U, . . . points in the Brillouin zone. A pair (k↑,−k↓) gets scattered to and fro,
from the hole to the electron state (k ′↑,−k ′↓) such that k ′ − k = K(220) + q where q is a phonon
wavevector.

5.1. Criterion for superconductivity

From equation (65) the criterion for superconductivity to exist can be obtained and is as follows.

(1) The minimum reciprocal lattice vector Kmin should satisfy Kmin/2kF < 1.
(2) Even if condition (1) is satisfied there have to be electron and hole pockets in different

bands at the Fermi surface to obtain non-vanishing values of F∗
bs.

We illustrate the applicability of these rules with some examples.
With z = 1, the Fermi surface does not cut the zone boundary so superconductivity does

not occur in alkali and noble metals at normal pressure. Amongst group IIA and IIIA elements
in the periodic table only Be and La are superconductors. In the double-zone hcp scheme in
Be, from [29], it is seen that the presence of the h2(�) coronet and the e3(K) cigar shaped
pocket makes F∗

bs �= 0. Likewise, in La h5(�A) and e7(HK) form the conjugate sections. In all
the rest of the elements in these groups the presence of a multiply connected hole or electron
section makes F∗

bs vanish.
In 3d metals Cr to Ni and in 4d metal Pd magnetic interactions make degenerate time-

reversed pair states at the Fermi surface non-degenerate so F∗
bs vanishes. In other cases Tc is

directly proportional to N(0) in the transition metal elements, in contrast to the BCS result,
that gives exponential dependence.

There are several metals like Cs, Sc and Y which do not superconduct at normal pressure
but do so under high pressure. In these cases, F∗

bs changes from zero to non-zero values at
high pressure. For example, caesium shows superconductivity at high pressure of 120 kbar
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with Tc of 1.5 K. Analysis of the electronic structure of Cs with pressure shows [30] that at
normal pressure there is a single band below the Fermi surface. It is only when the cell volume,
V , decreases to less than half its volume at normal pressure, V0(V/V0 = 0.4), that a second
band appears below the Fermi surface at X3. This occurs at the pressure of 43 kbar. But the
contribution of band 2 to the total charge is only 2%. So the charge distribution is mainly that of
the first band. Superconductivity occurs at 120 kbar when e- and h-sections have comparable
charge densities (see equation (38)).

The band structure of A15 compounds has been studied by Mattheiss [31]. He finds that
as many as 15 Fermi surface sheets exist in this structure. This enhances F∗

bs and hence Tc.
For example, consider Nb3Sn. For Nb, F∗

bs = 30 (table 1) is obtained from (110), (200) and
half of (210). In Nb3Sn another half of (210) is added, making F∗

bs = 42. Then Tc (Nb3Sn) =
Tc (Nb)× (42/30)2 = 18.07 K. On a similar basis, Tc (V3Si) = Tc(V)× (54/30)2 = 17.2 K.
In both cases the agreement with experiment is good, indicating that Sn and Si atoms may not
play any significant role in the superconductivity of these A15 compounds.

5.2. Isotope effect

Equation (65) suggests that Tc ∝ (MθD)
−1 ∝ M−1/2. The Darwin term energy is also

dependent on the isotopic variation of an atom as the radius of the nucleus varies with atomic
number as A1/3 and δ(0) depends on the electron charge density at the nucleus.

Consider Tc ∝ M−δ , (MθD)
−1 ∝ M−0.5, and β ∝ M+ε. This gives

δ = 0.5(1 − 4ε) (68)

where

ε = (M/β)(∂β/∂M) (69)

δ can account for the deviation of isotope effect coefficient from 0.5.

5.3. The Coulomb pseudopotential,µ∗

We obtain values of λ and µ∗ from tunnelling experiments. These can be compared using
equations (54) and (57),

∣∣∣∣
λ

µ∗

∣∣∣∣ = z − 0.25

0.25

F∗2
bs

F∗′′2
bs

. (70)

For Pb, kF = 1.57 Å−1, qD = 1.25 Å−1, and ks = 1.95 Å−1. Then F∗
bs = 50, F∗′

bs = 26, and
F∗′′

bs = 62. With z = 4 and λ = 1.12, µ∗ = 0.12, which agrees with experiment [6].

5.4. Estimates of λ

The Tc equations in (60) and (64), despite their vastly different forms, represent the same
physical fact: the coherent recoilless scattering of pairons by the nucleus provides the binding
energy between the members of the pair through quenching of the repulsive electron–ion E ·p
interaction energy. The sum of the fraction with recoil, exp[− (1+λ)(1+λD)

λ−µ∗−λD ], and without recoil,

exp(−λD), is always unity. Through Lipkin’s sum rule [13] we then obtain both equations (60)
and (64). From equations (54) and (55)

λ

λD
= N(0)

Ns(0)

{〈
β2

〉 − 〈β〉2
}

〈β〉2

F∗2
bs

F∗′2
bs

∼ f
θD

Tc
. (71)
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This is obtained on the basis that incoherent and coherent scattering probabilities are nearly
proportional to θD and Tc, respectively. From table 1, the experimental value of f is V (0.4),
Nb (0.6), Ta (0.13), Mo (0.36), Al (0.29), In (0.67) and Pb (1.0).

6. Exciton mechanism—superconductivity in oxides

In ionic crystals with sizable density of electrons in the conduction band there is screening of
the pseudopotential which for a free electron gas can be expressed as the Lindhard dielectric
function. Schrieffer [1] has shown that the spectral function of these excitations is of the same
form as the spectral function of the phonon Green’s function except that the weight function
in the former involves matrix elements of the electronic density fluctuations while in the latter
that of the ionic density fluctuation operator. Since the excitations are electronic these are
called excitons. Our interest is in the scattering of pairon from a hole to an electron band with
a momentum transfer k ′ − k = K + q = q ′ where q ′ is the momentum of the exciton. We need
the screening factor ε(q ′) for the electron–ion pseudopotential

ε(q ′) = [
1 − 8πe2/	aq ′2]χ(q ′)

where χ(q ′) is defined in equation (13) and 	a is the atomic volume.
The coupling constant, ζ , can be obtained using equation (14),

ζ = Ns(0)φel = Ns(0)〈β2〉F∗2
bs 〈χ(K )〉 〈ε(K )〉 . (72)

On comparison with equations (49) and (50) we note that the factor 〈χ(K )〉〈ε(K )〉 of
the exciton coupling is equivalent to the 〈|K + q|2〉/2M〈ω2

kλ〉D of the phonon coupling. In
oxide superconductor the charge carriers exist in the (Ba/Sr)–O plane and are coupled to the
stretching mode B1g vibrations of the apical oxygen in the M+n–O4–Cu2 bond [32]. The
carrier concentration, ns, is determined by the vibrations of the O4 atoms which appear as a
doublet along the z connected by inversion and have value close to unity for the optimally
doped samples. Consequently, the charge carriers are polaronic, which we have shown
through the analysis of the results of photoemission and femtosecond optical absorption
spectroscopy [32]. Maxim et al [33] have given a similar model and have also given
experimental support for it. In this case there are two lattice vectors that connect hole
pocket at ±(1/2, 1/2, 0) to the electron pocket at ±(0, 1, 0), so F∗

bs = 2. Further, from
equation (13) χ(q ′) = Nbsu(x), x = q ′/2kF = √

5/8. Taking Nbs = N(0)/(m∗∗/m∗) where
N(0) is the free electron density of states, N(0) = 0.75 z′/EF, with EF = h̄ ωex,max and
z′ = 1 (Ba2+O1− ↔ Ba2+O2− + e+) we obtain TC using steps similar to the derivation of the
equation (64). Taking 〈ω2

ex〉1/2 = (2/3)ωex,max and Ns(0) β = ns,

kBTc = ζ h̄
〈
ω2

ex

〉1/2 = 1

3
F∗2

bs
nsβ

m∗∗/m∗ (73)

where m∗∗ is the exciton-dressed mass of the pairon whose undressed mass is m∗
(equation (19)).

Expressing Tc in K and β in meV and taking F∗
bs = 2,

Tc (K) = 15.44
nsβ (meV)

m∗∗/m∗ . (74)

Equation (74) accounts for the universal correlation between Tc and ns/(m∗∗/m∗)observed
by Uemura et al [34]. From photoemission spectroscopy, we have estimated m∗∗/m∗ for Bi-
2212 and found it 1.6 for optimally doped samples (appendix A.3). With ns = 1 and Tc = 80 K,
we obtain from equation (74) 8.29 meV for β. For all cuprates a constant value of β, 8.45 meV
for Sr and 10.47 meV for Ba, fits the experimental data on TC. For metallic Ba and Sr with
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Table 2. The calculated values of Tc for oxide superconductors from equation (74). nCu is the
number of copper planes, m∗∗/m∗ is the effective mass and ns is the superconducting carrier
density per primitive unit cell. The last column gives the observed values of Tc. ns is chosen to
fit the observed Tc, taking a constant value of β of 10.47 meV for the Ba and 8.45 meV for the Sr
compound. For nCu = 1, 2 and 3, m∗∗/m∗ is 3.5, 1.6 and 1.3, respectively (see text).

Short Tc (K) Tc (K)
Compound notation nCu m∗∗/m∗ ns (cal.) (obs.)

La2−ySryCuO4 214 1 3.5 1.0 37.3 37
y = 0.15
Bi2Sr2CuO6 Bi-2201 1 3.5 0.16 6.0 6
Tl2Ba2CuO6 Tl-2201 1 3.5 0.32 14.8 15
HgBa2CuO4+δ Hg-1201 1 3.5 2.0 92.4 92
YBa2Cu3O7−δ Y-123 2 1.6 0.96 97.0 92
Bi2Sr2CaCu2O8 Bi-2212 2 1.6 1.0 81.5 80
Tl2Ba2CaCu2O7 Tl-2212 2 1.6 0.80 80.8 80
Tl2Ba2CaCu2O7 Tl-2212 2 1.6 1.0 101.0 108
PbSr2CaCu2O7 Pb-1212 2 1.6 1.0 81.5 80
Bi2Sr2Ca2Cu3O10 Bi-2223 3 1.3 1.0 100.4 110
Tl2Ba2Ca2Cu3O9 Tl-2223 3 1.3 1.0 124.3 120
Tl2Ba2CaCu3O10 Tl-2213 3 1.3 1.0 124.3 125
HgBa2Ca2Cu3O8−δ Hg-1223 3 1.3 1.0 124.3 134
Tl2Ba2Ca3Cu4O11 Tl-2234 4 1.35 1.0 119.7 120
Tl2Ba2Ca3Cu4O12 Tl-2234 4 1.5 1.0 107.8 105

z = 2 and with the values of Knight shift and nuclear magnetic susceptibility from [27], β
from equation (67) is 5.17 meV for Ba and 8.47 meV for Sr, in reasonable agreement with the
TC data.

It is shown by Uemura et al [34] that in oxide superconductors the muon-spin-relaxation
(µSR) rate, σ , at T = 0 K is proportional to the ratio ns/(m∗∗/m∗). In heavily doped samples,
TC shows saturation and suppression with increasing values of this ratio and saturation starts at
different values of σ (T → 0) depending on the multiplicity of CuO planes, nCu. For example,
for nCu,= 1, the peak in TC occurs approximately at σ(T → 0) ∼ 1.35 µs−1, for nCu = 2,
at 3.0 µs−1, and for nCu = 3.0, at 3.6 µs−1. If we assume that the peak occurs at optimally
doped compositions for which ns = 1, and for nCu = 2, m∗∗/m∗ = 1.6 as experimentally
determined for Bi 2212, we get m∗∗/m∗ = 3.5 for nCu = 1 and 1.3 for nCu = 3. In table 2 we
give the values of TC obtained from equation (74) using the value of effective mass, m∗∗/m∗,
3.5, 1.6 and 1.3 for nCu = 1, 2 and 3, respectively, and with ns as a fitting parameter. In most
cases, ns = 1. However, for Hg-1201, ns = 2, indicating the possibility of two pairons per
unit cell. As the µSR data are not available for nCu = 4, for these we have chosen ns = 1 and
obtained m∗∗/m∗ from equation (74). The effective mass decreases as the number of copper
planes increases from one to three, beyond which it begins to increase.

From table 2 we find that values of ns that are not unity are multiples of 0.16. As ns is
proportional to the product of the probabilities of the pairon in the e- and h-sections of the
Fermi surface, ns = 1 represents equal probability, ns 0.96 represents approximately 48% and
52% and so on. The reason for multiple values of 0.16 for ns is not clear at present.

7. Structure dependence of superconductivity and maximum critical temperature

The phonon mediated coupling presented here is in the isotropic and homogeneous model
of a metal. From equation (64) Tc is directly related to F∗

bs which is a structure dependent
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parameter. It is shown that in Nb3Sn and V3Si with A15 structure the increase in Tc to 18.5
and 17.2 K from pure Nb and V value of Tc, respectively, can be attributed entirely to F∗

bs.
Tc in these compounds is, however, limited by the factor MθD in the denominator. In MgB2
and fullerenes, this is small so Tc is relatively large, but in both these compounds isotropy
is partially lost, leading to reduction in F∗

bs. Optimizing both these factors may lead to a
maximum Tc of 40 to 50 K.

The coupling constant ζ of the exciton-coupled superconductor is nearly twice λD while
θD is about one-tenth of EF. Since the critical temperature is the product of the two and as TC

of the phonon-coupled superconductor can barely exceed 20 K, with appropriate optimization
TC (exciton) may reach 300 K.

8. Conclusion

It is shown that the pairing correlations that makes the electron–ion repulsive energy from the
Darwin term vanish produce electron–electron coupling through recoilless scattering and are
of two kinds, one phonon induced and the other exciton induced. The former predominates in
low Tc while the latter in high Tc superconductors. For the dominant phonon-coupled system
there is near ideal isotope effect and the phonon spectral function obtained from tunnelling is
similar to the phonon density of states from neutron scattering as both are based on a delta-
function type of interaction. The magnitude of Coulomb pseudopotential is accounted for by
the cancellation theorem, which weakens the attractive bare ion potential within the core of the
atom. The critical temperature is obtained from the requirement that the recoil energy of the
nucleus in the scattering of the pairon equals the Debye–Waller exponent times the average
energy of the boson field. The criterion for superconductivity is expressed in terms of non-
vanishing structural weight of reciprocal lattice vectors that transform particles of one band to
another and produce the order parameter. The present analysis of critical temperature is based
on the superfluid state with vanishing momentum. Its extension to non-vanishing momentum
will be important from the point of view of technical application.
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Appendix. The effective mass

We attempt to deduce semi-empirically the effective mass of the electron due to electron–
phonon, electron–lattice and electron–electron interactions. The aim is limited to the problem
of superconductivity.

A.1. Electron–phonon interaction

McMillan [6] has shown that the effective mass due to Fröhlich type ep interaction is determined
by equation (11)

m∗

mc
= Z(0) = 1 + λ. (A.1)
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To analyse the dependence of λ on materials properties McMillan expressed λ in terms of
the ionic pseudopotential

λ = N(0)
〈
I 2

〉

M
〈
ω2

〉 (A.2)

where I = i(k − k ′)εk−k′ ,ννk−k′ .
Here νk−k′ is the Fourier transform of the ionic pseudopotential. Equation (A.2) is

equation (49) with νk−k′ describing the inelastic incoherent scattering cross section due to
E · p ionic pseudopotential (equation (48)). We can then take mc to denote the Coulomb and
band dressed effective mass. For the s electron, in addition to incoherent, there also exists a
coherentE ·p scattering that produces the electron–phononcouplingλD given in equation (55).
Then

m∗∗

m∗ = 1 + λD

so
m∗∗

mc
= Z ′(0) = (1 + λ) (1 + λD). (A.3)

The renormalization Z ′(0) appears in the McMillan experimentally adjusted Tc

equation [6].

A.2. Electron–electron interaction

The effective mass within the RPA approximation has been calculated by Quinn and Ferrell [35]
and is given by

m

mc
= 1 − ars

2π

[
2 + ln

(ars

π

)]
(A.4)

where a = ((4/9)π)1/3 and rs is the interelectron separation parameter. But unfortunately the
region of metallic densities lies outside the region of the validity of the RPA, namely rs < 1.
The calculation of Rice [36] of mc/m for metallic densities 1.8 � rs � 2.5 shows that it is
nearly equal to unity.

In the present case for the pairon the ee interaction is taken into account through the
screening of the pseudopotential in equation (56) that gives z′ = z − 0.25 for |ω| � ωD and
z′ = −0.25 for ωD � ω � EF/h̄. The mass enhancement due to electron–electron interaction
is therefore included in the expression for TC in equation (60).

A.3. Electron–lattice interaction

The mass enhancement for the conduction electron due to its interaction with the electron–ion
pseudo-potential is given by [14]

m∗

m
= mKmE = 1 + λel. (A.5)

Here the component mK arises from the dependence of energy on the wavevector near the zone
boundary and mE arises from the energy dependence of the bandgap. For Pb, mK = 0.95 and
mE = 0.91, hence λel = −0.14. Physically the band dressing in Pb reduces the mass of the
electron.

In ionic crystals the electron carries with it a cloud of phonons when it moves in the solid.
This increases the effective mass of the polaron. In the weak coupling approximation [23]

m∗∗ ∼= m∗ (1 − 1
6 α)

−1 (A.6)
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where m∗ is the Fröhlich type ep enhanced effective mass and α is the dimensionless coupling
employed in polaron theory. The charge conduction is often considered in term of large,
small and correlated polarons [32]. The large polarons move in a band and the effective
mass is given in equation (A.6). The small polarons are localized states trapped near a
single ion and conduction is through thermally activated hopping, which arises due to Franck–
Condon transitions. In mixed valence compounds like magnetite and oxide superconductors
the conduction occurs through correlated polarons where hopping by small polarons is without
Franck–Condon transitions, resulting in vanishing activation Energy, and the effective mass
is similar to that in a polaron band [37]. Using equation (A.6) we obtain m∗∗/m∗ in Bi-
2212 superconductor from photoemission spectroscopy and estimate that for optimally doped
samples α ∼ 2.25 which gives m∗∗/m∗ = 1.6 [32].

References

[1] Schrieffer J R 1964 Theory of Superconductivity (New York: Benjamin)
[2] Allen P B and Metrovic B 1982 Solid State Phys. 37 1
[3] Anderson P W 1987 Science 235 1196

Anderson P W et al 1998 Phys. Rev. Lett. 58 2790
[4] Carbotte J P et al 2000 Nature 401 354
[5] Nagamatsu J et al 2001 Nature 410 63
[6] McMillan W L 1968 Phys. Rev. 167 331
[7] Srivastava C M 1984 Bull. Mater. Sci. 6 273

Srivastava C M 1985 Pramana J. Phys. 25 617
Srivastava C M 1987 Pramana J. Phys. 29 L423

[8] Essen H 2000 Preprint cond-mat/0002096
Essen H 1999 J. Phys. A: Math. Gen. 32 2297

[9] Hirsch J E 2005 Preprint cond-mat/0508471
Hirsch J E 2005 Phys. Rev. B 71 184521

[10] Mattheiss L F and Hamann D R 1983 Phys. Rev. B 28 4227
[11] Bachelet G B and Schuter M 1982 Phys. Rev. B 25 2103
[12] Scalapino D J 1964 Superconductivity vol 1, ed R D Parks (New York: Dekker) p 449
[13] Lipkin J 1961 Phys. Rev. 123 62
[14] Cohen M L and Heine V 1970 The fitting of psuedopotentials to experimental data Solid State Phys. 24 37

Heine V and Weaire D 1970 Pseudopotential theory of cohesion and structure Solid State Phys. 24 249
[15] See chapter 1 in Ginzburg V L and Kirzhnits D A (ed) 1982 High Temperature Superconductivity (New York:

Consultant Bureau) p 23 for exciton and chapter 3, p 126 for electron–ion interaction (English translation by
A K Agyeil and J L Birman)

[16] Springford M (ed) 1980 Electrons at the Fermi Surface (Cambridge: Cambridge University Press) p 70
[17] Hopfield J J 1989 Phys. Rev. B 86 443
[18] Bethe H A and Salpeter E E 1957 Handbuck der Physik vol 35/1, ed S Flugg (Berlin: Springer) p 159
[19] Ambegaoker V 1964 Superconductivity vol 1, ed R D Parks (New York: Dekker) p 259
[20] Ginzburg V L and Landau L D 1950 Zh. Eskp. Theor. Fiz. 20 1064
[21] Glauber R J 1955 Phys. Rev. 98 1962
[22] Placzek G and van Hove L 1954 Phys. Rev. 93 1207
[23] Kittel C 1966 Quantum Theory of Solid 3rd edn (New York: Wiley) p 140 for polaron and p 390 for recoilless

emission
[24] Oskataki V S 1967 Sov. Phys.—Solid State 9 420

Bredov M M et al 1967 Sov. Phys.—Solid State 9 214
[25] Morel P and Anderson P W 1962 Phys. Rev. 125 1263
[26] Visscher W M 1960 Ann. Phys. 9 194
[27] Carter G C, Bennett L H and Kahan D J 1977 Progress in Materials Science vol 20 Metallic Shifts in NMR

Part I (New York: Pergamon)
[28] Anderson J K and Gold A V 1965 Phys. Rev. 139 A1459
[29] Cracknell A P and Wong K C 1973 The Fermi Surface (Oxford: Clarendon)
[30] Louie S G and Cohen M L 1974 Phys. Rev. B 10 3237

http://dx.doi.org/10.1103/PhysRevLett.58.2790
http://dx.doi.org/10.1038/43843
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1103/PhysRev.167.331
http://arxiv.org/abs/cond-mat/0002096
http://dx.doi.org/10.1088/0305-4470/32/12/005
http://arxiv.org/abs/cond-mat/0508471
http://dx.doi.org/10.1103/PhysRevB.71.184521
http://dx.doi.org/10.1103/PhysRevB.28.4227
http://dx.doi.org/10.1103/PhysRevB.25.2103
http://dx.doi.org/10.1103/PhysRev.123.62
http://dx.doi.org/10.1103/PhysRev.98.1692
http://dx.doi.org/10.1103/PhysRev.93.1207
http://dx.doi.org/10.1103/PhysRev.125.1263
http://dx.doi.org/10.1016/0003-4916(60)90028-2
http://dx.doi.org/10.1103/PhysRev.139.A1459
http://dx.doi.org/10.1103/PhysRevB.10.3237


164 C M Srivastava

[31] Mattheiss L F 1975 Phys. Rev. 12 2161
[32] Srivastava C M 1998 Pramana J. Phys. 50 11
[33] Mazim I I et al 1992 Phys. Rev. B 45 5103
[34] Uemura Y J et al 1989 Phys. Rev. Lett. 62 2317
[35] Quinn J J and Ferrell R A 1958 Phys. Rev. 112 812
[36] Rice T M 1965 Ann. Phys. 31 100
[37] Srivastava C M 1991 Physica C 176 481

http://dx.doi.org/10.1103/PhysRevB.12.2161
http://dx.doi.org/10.1103/PhysRevB.45.5103
http://dx.doi.org/10.1103/PhysRevLett.62.2317
http://dx.doi.org/10.1103/PhysRev.112.812
http://dx.doi.org/10.1016/0003-4916(65)90234-4
http://dx.doi.org/10.1016/0921-4534(91)90052-Z

	1. Introduction
	2. Estimate of the Darwin term
	3. Electron--ion Hamiltonian including the Darwin term
	3.1. The renormalization Z
	3.2. The pair field

	4. Quenching of electron--ion E dot p energy
	5. Self-energy of the super state and the T_c equation
	5.1. Criterion for superconductivity
	5.2. Isotope effect
	5.3. The Coulomb pseudopotential, mu^*
	5.4. Estimates of, lambda

	6. Exciton mechanism---superconductivity in oxides
	7. Structure dependence of superconductivity and maximum critical temperature
	8. Conclusion
	Acknowledgment
	Appendix. The effective mass
	A.1. Electron--phonon interaction
	A.2. Electron--electron interaction
	A.3. Electron--lattice interaction

	References

